
Docker	Automation	with
Dockerfiles	(Windows)
Tuesday,	August	29,	2017	12:25	AM

Learn	how	to	automate	the	build	of	a	custom	Windows-
based	Docker	image	from	a	Dockerfile.

This	workshop	will	show	you	how	to	automate	the	building	and	configuring	of	a	Windows-based
Docker	image	by	utilizing	Dockerfiles.	You	will	construct	a	Dockerfile	by	mimicking	a	production
environment	configuration.	You'll	also	learn	some	of	the	options	for	a	Dockerfile	configuration.

What	You	Will	Learn
Constructing	a	Dockerfile	for	Windows-based	Builds
Various	Dockerfile	Configuration	Options
Building	a	Docker	Image	from	a	Dockerfile

Ideal	Audience
IT	Managers
Developers	and	Software	Architects
Configuration	and	Change	Managers
DevOps	Engineers

This	workshop	will	show	you	how	to	automate	the	building	and	configuring	of	a	Windows-based
Docker	image	by	utilizing	Dockerfiles.	You	will	construct	a	Dockerfile	by	mimicking	a	production
environment	configuration.	You'll	also	learn	some	of	the	options	for	a	Dockerfile	configuration.

Time	Estimate:	2	hours

Overview

Setup	Requirements
The	following	workshop	will	require	that	you	use	a	Remote	Desktop	client	in	order	to	connect	to	a
remote	machine.	If	you	are	using	a	Mac,	then	download	the	Microsoft	Remote	Desktop	client.

Additional	Requirements
For	the	following	workshop,	you	will	need	a	subscription	(trial	or	paid)	to	Microsoft	Azure.	Please	see
the	next	page	for	how	to	create	a	trial	subscription,	if	necessary.

Requirements

https://itunes.apple.com/us/app/microsoft-remote-desktop/id715768417?mt=12
Azure_Registration.html

Azure
We	need	an	active	Azure	subscription	in	order	to	perform	this	workshop.	There	are	a	few	ways	to
accomplish	this.	If	you	already	have	an	active	Azure	subscription,	you	can	skip	the	remainder	of	this
page.	Otherwise,	you'll	either	need	to	use	an	Azure	Pass	or	create	a	trial	account.	The	instructions	for
both	are	below.

Azure	Pass
If	you've	been	provided	with	a	voucher,	formally	known	as	an	Azure	Pass,	then	you	can	use	that	to
create	a	subscription.	In	order	to	use	the	Azure	Pass,	direct	your	browser	to
https://www.microsoftazurepass.com	and,	following	the	prompts,	use	the	code	provided	to	create
your	subscription.

Trial	Subscription
Direct	your	browser	to	https://azure.microsoft.com/en-us/free/	and	begin	by	clicking	on	the	green
button	that	reads	Start	free.

1.	 In	the	first	section,	complete	the	form	in	its	entirety.	Make	sure	you	use	your	real	email
address	for	the	important	notifications.

2.	 In	the	second	section,	enter	a	real	mobile	phone	number	to	receive	a	text	verification
number.	Click	send	message	and	re-type	the	received	code.

3.	 Enter	a	valid	credit	card	number.	NOTE:	You	will	not	be	charged.	This	is	for	verification	of
identity	only	in	order	to	comply	with	federal	regulations.	Your	account	statement	may	see	a
temporary	hold	of	$1.00	from	Microsoft,	but,	again,	this	is	for	verification	only	and	will	"fall
off"	your	account	within	2-3	banking	days.

4.	 Agree	to	Microsoft's	Terms	and	Conditions	and	click	Sign	Up.

This	may	take	a	minute	or	two,	but	you	should	see	a	welcome	screen	informing	you	that	your
subscription	is	ready.	Like	the	Office	365	trial	above,	the	Azure	subscription	is	good	for	up	to	$200	of
resources	for	30	days.	After	30	days,	your	subscription	(and	resources)	will	be	suspended	unless	you
convert	your	trial	subscription	to	a	paid	one.	And,	should	you	choose	to	do	so,	you	can	elect	to	use	a
different	credit	card	than	the	one	you	just	entered.

Azure	Registration

https://www.microsoftazurepass.com/
https://azure.microsoft.com/en-us/free/

Congratulations!	You've	now	created	an	Office	365	tenant;	an	Azure	tenant	and	subscription;	and,
have	linked	the	two	together.

Objective
In	this	workshop,	you	will	first	build	a	'production'	web	server	environment	on	the	actual	virtual
machine.	You	will	then	take	those	same	steps	and	replicate	them	in	a	Dockerfile	for	building	a
containerized	version	of	your	VM.

The	steps	in	this	workshop	are	not	extremely	tedious.	However,	they	are	broken	out	into	individual
pages	for	a	couple	of	reasons.	First,	it	is	to	simplify	the	process	and	aid	you	in	your	comprehension.
Second,	it	is	for	the	purpose	of	you	seeing	the	actual	steps	of	building	the	production	virtual	machine
so	that	you	comprehend	what	you	are	doing	as	you	add	each	step	to	the	Dockerfile.

Introduction

Objective
All	of	our	work	in	this	workshop,	with	the	exception	of	the	small	Azure	configuration	at	the	end,	will
be	performed	on	a	single	virtual	machine.	Let's	get	started	creating	that	VM.

Create	a	Resource	Group
In	order	to	create	resources,	we	need	a	Resource	Group	to	place	them	in.

1.	 If	you	are	not	there	already,	go	ahead	and	click	on	the	Resource	Groups	 	in	the	Azure
Portal	to	open	the	Resource	Groups	blade.

2.	 At	the	top	of	the	Resource	Groups	blade,	click	on	Add	 .	This	will	open	a	panel	that	asks
for	some	basic	configuration	settings.

3.	 Complete	the	configuration	settings	with	the	following:

Resource	group	name:	azworkshops_dockerfile_win_demo
Subscription:	<choose	your	subscription>
Resource	group	location:	<choose	your	location>

4.	 <Optional>	Check	Pin	to	dashboard	at	the	bottom	of	the	panel.

5.	 Click	Create.

6.	 It	should	only	take	a	second	for	the	resource	group	to	be	created.	Once	you	click	create,	the
configuration	panel	closes	and	returns	you	to	the	list	of	available	resource	groups.	Your
recently	created	group	may	not	be	visible	in	the	list.	Clicking	on	Refresh	 	at	the	top	of
the	Resource	Groups	blade	should	display	your	new	resource	group.

NOTE:	When	you	create	a	resource	group,	you	are	prompted	to	choose	a	location.	Additionally,	as
you	create	individual	resources,	you	will	also	be	prompted	to	choose	locations.	The	location	of
resource	groups	and	their	resources	can	be	different.	This	is	because	resource	groups	store	metadata
describing	their	contained	resources;	and,	due	to	some	types	of	compliance	that	your	company	may
adhere	to,	you	may	need	to	store	that	metadata	in	a	different	location	than	the	resources
themselves.	For	example,	if	you	are	a	US-based	company,	you	may	choose	to	keep	the	metadata
state-side	while	creating	resources	in	foreign	regions	to	reduce	latency	for	the	end-user.

Create	Virtual	Machine

Create	a	Virtual	Machine
Now	that	we	have	an	available	resource	group,	let's	create	the	actual	Windows	server.

1.	 If	you	are	not	there	already,	go	ahead	and	navigate	to	the
azworkshops_dockerfile_win_demo	resource	group.

2.	 At	the	top	of	the	blade	for	our	group,	click	on	Add	 .	This	will	display	the	blade	for	the
Azure	Marketplace	allowing	you	to	deploy	a	number	of	different	solutions.

3.	 We	are	interested	in	deploying	a	Windows	Server	2016	Datacenter	server.	Therefore,	in	the
Search	Everything	box,	type	in	Windows	Server	2016.	This	will	display	a	couple	of	different
versions.	Choose	Windows	Server	2016	Datacenter.

4.	 There	will	be	a	number	of	solutions	available,	including	one	with	containers	already	enabled.
For	the	practice,	we'll	enable	containers	manually.	Therefore,	choose	the	image	as
highlighted	in	the	image	below.

5.	 This	will	display	a	blade	providing	more	information	about	the	server	we	have	chosen.	To
continue	creating	the	server,	choose	Create.

6.	 We	are	now	prompted	with	some	configuration	options.	There	are	3	sections	we	need	to
complete	and	the	last	section	is	a	summary	of	our	chosen	options.

1.	 Basics

Name:	docker-win
VM	disk	type:	SSD
Username:	localadmin
Password:	Pass@word1234
Confirm	password:	<same	as	above>
Subscription:	<choose	your	subscription>
Resource	group:	Use	existing	-	azworkshops_dockerfile_win_demo
Location:	<choose	a	location>
Already	have	a	Windows	Server	license?	No

2.	 Size

DS1_V2
3.	 Settings

Use	managed	disks:	No

Storage	account:	(click	on	it	&	Create	New)

Name:	dfwindata<random	number>	(ex.	dfwindata123456)
(NOTE:	This	name	must	be	globally	unique,	so	it	cannot	already	be
used.)
Performance:	Premium
Replication:	Locally-redundant	storage	(LRS)

Virtual	network:	<accept	default>	(e.g.	(new)
azworkshops_dockerfile_win_demo-vnet)

Subnet:	<accept	default>	(e.g.	default	(172.16.1.0/24))

Public	IP	address:	<accept	default>	(e.g.	(new)	docker-win-ip)

Network	security	group	(firewall):	<accept	default>	(e.g.	(new)	docker-win-
nsg)

Extensions:	No	extensions

Availability	set:	None

Boot	diagnostics:	Enabled

Guest	OS	diagnostics:	Disabled

Diagnostics	storage	account:	(click	on	it	&	Create	New)

Name:	dfwindiags<random	number>	(ex.	dfwindiags123456)
Performance:	Standard
Replication:	Locally-redundant	storage	(LRS)

4.	 Summary	(just	click	OK	to	continue)

Once	scheduled,	it	may	take	a	minute	or	two	for	the	machine	to	be	created	by	Azure.	Once	it	has
been	created,	Azure	should	open	the	machine's	status	blade	automatically.

Connect	to	the	Virtual	Machine
Once	your	machine	has	been	created,	we	can	remotely	connect	to	it	via	a	remote	desktop	protocol
(RDP)	client.

Get	Public	IP
1.	 If	it	is	not	already	open,	navigate	to	the	Overview	blade	of	your	newly	created	virtual

machine.

2.	 In	the	top	section	of	the	blade,	in	the	right	column,	you	should	see	a	Public	IP	address
listed.	

3.	 Copy	the	IP	address.

Connect	to	the	Machine	via	Remote	Desktop
To	connect	to	the	machine	remotely,	we	need	to	download	the	Remote	Desktop	Protocol	(RDP)
profile.

1.	 Click	on	the	Overview	 	to	return	to	the	general	information	for	the	docker-win	virtual
machine.

2.	 In	the	Actions	section,	click	on	Connect	 .	This	will	download	the	RDP	profile	to	your
machine.

3.	 Open	the	profile	and	accept	any	warnings.

4.	 For	the	username,	enter	\localadmin	(with	the	backslash).	And,	for	the	password,	enter
Pass@word1234.	Click	OK.

5.	 Again,	accept	any	warnings.

Congratulations.	You	have	successfully	created	and	connected	to	your	remote	Windows	Server	2016
server	in	Azure.	You	are	now	ready	to	install	the	Docker	runtime.

Overview
We	have	just	created	our	Windows	Server	2016	server.	We	now	need	to	apply	any	available	system
updates	along	with	installing	and	configuring	Docker	to	begin	working	with	containers.

Install	Updates
Just	like	any	other	operating	system,	updates	are	periodically	released	to	support	new	features	and
patch	any	potential	security	threats.	We	will	apply	the	updates	first.

1.	 If	you	have	not	already,	connect	to	your	remote	Windows	Server	2016	server	and	login.

2.	 Open	a	command	prompt	as	an	Administrator,	type	the	following	at	the	command	prompt:

sconfig

3.	 This	will	open	a	screen	like	the	following:

Install	Docker

4.	 Choose	option	 6 ,	then	 A 	(twice)	to	download	and	install	all	updates.

5.	 Depending	on	the	number	and	size	of	available	updates,	this	process	may	take	a	few
minutes	and	could	require	a	reboot.	Now	would	be	a	good	time	to	take	a	break.

Install	Docker
We	now	have	an	updated	Windows	operating	system.	We	are	ready	to	install	Docker.

1.	 Open	a	PowerShell	prompt	as	an	Administrator:

2.	 At	the	prompt,	type	the	following:

Install-PackageProvider	-Name	NuGet	-MinimumVersion	2.8.5.201	-Force
Install-Module	-Name	DockerMsftProvider	-Force
Install-Package	-Name	docker	-ProviderName	DockerMsftProvider	-Force
Restart-Computer	-Force

3.	 This	will	download	the	Docker	engine	and	install	it	as	a	background	service.

4.	 After	you	run	the	above	commands,	your	virtual	machine	will	reboot	forcing	a	disconnect.	Go
ahead	and	reconnect.

Ensure	Docker	Engine	is	Running
1.	 Open	a	PowerShell	prompt	as	an	Administrator	and	type	the	following:

docker	version

2.	 You	should	see	something	similar	to	the	following:

Client:
	Version:						17.03.1-ee-3
	API	version:		1.27
	Go	version:			go1.7.5
	Git	commit:			3fcee33
	Built:								Thu	Mar	30	19:31:22	2017
	OS/Arch:						windows/amd64

Server:
	Version:						17.03.1-ee-3
	API	version:		1.27	(minimum	version	1.24)
	Go	version:			go1.7.5
	Git	commit:			3fcee33
	Built:								Thu	Mar	30	19:31:22	2017
	OS/Arch:						windows/amd64
	Experimental:	false

3.	 Because	the	service	is	running,	we	can	now	use	the	 docker 	command	later	in	this
workshop.

You've	successfully	installed	the	Docker	engine.

Overview
The	final	two	elements	of	preparing	our	Windows	Server	virtual	machine	is	to	install	Internet
Information	Server	(IIS)	and	configure	the	necessary	port	(80)	in	the	firewall	to	allow	HTTP	requests.

Install	IIS
Since,	for	this	example,	we	will	be	deploying	and	hosting	a	basic,	static	website,	the	standard	IIS
components	are	sufficient.	We	could	install	them	through	the	Server	Manager,	but	we	are	going	to
use	PowerShell	so	that	we	become	familiar	with	executing	tasks	for	later	when	we	need	to	automate
this	process	in	Docker.

1.	 Open	PowerShell	in	elevated	mode	(with	Administrator	privileges):	

Install	IIS

2.	 Type	and	execute	the	command:

Install-WindowsFeature	-Name	Web-Server,	Web-Mgmt-Tools,	NET-Framework-45
-ASPNET,	Web-App-Dev,	Web-Net-Ext45,	Web-AppInit,	Web-Asp-Net45,	Web-ISAP
I-Ext,	Web-ISAPI-Filter

3.	 You	should	then	see	the	components	download	and	install.	

4.	 It	shouldn't	be	necessary,	but	just	to	be	safe,	let's	reset	IIS	to	pickup	the	installation	of	any
additional	modules.	Type	the	following	and	press	Enter:	 iisreset	/restart

5.	 We	should	then	see	some	messages	telling	us	that	IIS	restarted	successfully.

Configure	Firewall
The	last	step	to	configuring	our	server	is	to	allow	IIS	to	serve	webpages	through	port	80.	By	default,
the	port	is	blocked	and	so,	even	if	IIS	was	running,	we	would	not	be	able	to	access	the	site	outside	of
the	server,	itself.	We,	again,	are	going	to	use	PowerShell	to	configure	the	firewall.

1.	 If	it's	not	already	open,	again	open	PowerShell	in	elevated	mode.
2.	 Type	the	following	command

New-NetFirewallRule	-DisplayName	'HTTP(S)	Inbound'	-Profile	@('Domain',	'
Private',	'Public')	-Direction	Inbound	-Action	Allow	-Protocol	TCP	-Local
Port	@('80',	'443')

We've	now	completed	the	server	setup.	We	could	configure	a	separate	IIS	site	and	app	pool	for	our
site.	But,	to	keep	things	simple,	we're	going	to	use	the	default.

Overview
In	this	short	step	we	will	download	our	website	-	again,	via	PowerShell	-	into	our	default	IIS	directory.

Download	and	Expand	Site
The	default	folder	for	IIS	is	 C:\inetpub\wwwroot .	This	is	the	folder	we	will	use	for	hosting	our	site.
Keep	in	mind	that	within	a	microservice	architecture,	a	container	has	a	single	function	or	purpose.
So,	while	we	theoretically	could	host	multiple	sites	in	IIS,	it's	not	best	practice.	Moving	away	from
VMs	will	require	us	to	rethink	how	we're	accustomed	to	doing	things.

We	have	a	sample	static	site	that	we'll	download	from	GitHub	as	a	.zip	file	and	expand	it	into	our
target	folder.

1.	 If	it's	not	still	open	from	the	previous	step,	open	PowerShell	with	elevated	privileges.
2.	 Type	the	following	commands:

(new-object	Net.WebClient).DownloadFile('https://github.com/AzureWorkshop
s/samples-simple-iis-website/archive/master.zip','D:\master.zip');
Expand-Archive	-LiteralPath	D:\master.zip	-Destination	D:\
(new-object	-com	shell.application).namespace('C:\inetpub\wwwroot\').Copy
Here((new-object	-com	shell.application).namespace('D:\samples-simple-iis
-website-master').Items(),	16);
del	c:\inetpub\wwwroot\iisstart*.*

After	a	couple	of	seconds,	the	file	should	download.	The	above	script	downloads	the	.zip	file	from
GitHub	to	the	 D:\ 	temp	drive	(line	1);	extracts	the	.zip	file's	contents	(line	2)	which,	in-turn,	creates
a	subdirectory	of	the	extracted	files;	copies	the	files	from	the	subdirectory	to	our	IIS	root	folder	(line
3);	and,	deletes	the	IIS	placeholder	files.

Now,	if	you	were	to	open	Internet	Explorer	on	the	server	(e.g.	http://localhost/),	you	should	see	our
website	that	simply	displays	a	'Hello	World'	page.

Download	Sample	Website

Overview
Based	on	most	of	the	previous	steps,	we	are	ready	to	build	our	Dockerfile.	We	will	mimic	those	steps
for	automating	our	image	construction.

Review
In	preparation	of	writing	our	Dockerfile,	let's	review	all	the	steps	we've	performed	up	to	this	point.

1.	 Install	the	latest	version	of	Windows	Server.	Typically,	we	would	use	Windows	Nano	Server
which	is	designed	for	containerized	deployments.	However,	preparing	a	Nano	Server
container	requires	Hyper-V	and	is	a	little	more	in-depth	than	what	we	want	to	accomplish	for
this	workshop,	wo	we'll	stick	with	Windows	Server	2016.

2.	 Install	the	latest	updates
3.	 Install	and	configure	Docker
4.	 Install	and	configure	IIS
5.	 Configure	the	firewall
6.	 Download	the	sample	website

As	a	reminder,	since	we	are	constructing	an	image,	we	can	ignore	step	3.	We	won't	need	Docker
installed	inside	of	the	image.	Additionally,	Microsoft	is	nice	enough	to	provide	us	an	image	with	IIS
installed	and	the	firewall	configured.	This	allows	us	to	ignore	steps	4	and	5,	as	well.	All	we	are
required	to	do	is	install	updates,	Microsoft.NET	and	download	our	website.

Create	the	Dockerfile
Let's	go	ahead	and	create	the	Dockerfile	contents.	We'll	then	examine	each	line	below.

Construct	Dockerfile

1.	 We	need	to	create	a	Dockerfile.	Somewhere	on	your	desktop,	right-click,	then	click	New,
followed	by	Text	Document.	

2.	 Name	the	new	file	Dockerfile.	(Note:	This	will	add	the	".txt"	extension	to	the	file
automatically.	Typically,	our	Dockerfiles	shouldn't	have	an	extension,	but	that's	okay.	We'll
work	with	it.)

3.	 Enter	the	following	without	the	line	numbers.	The	line	numbers	are	provided	for	reference
below.

1			FROM	microsoft/iis:latest
2			SHELL	["powershell"]
3			MAINTAINER	Your	Name	<you@yourcompany.com>
4
5			RUN	Install-WindowsFeature	NET-Framework-45-ASPNET	;	\		
6							Install-WindowsFeature	Web-Asp-Net45	;	\
7							Install-WindowsFeature	Web-App-Dev	;	\
8							Install-WindowsFeature	Web-Net-Ext45	;	\
9							Install-WindowsFeature	Web-AppInit	;	\
10						Install-WindowsFeature	Web-ISAPI-Ext	;	\	
11						Install-WindowsFeature	Web-ISAPI-Filter	;
12
13		RUN	Invoke-Command	-ScriptBlock	{$ci	=	New-CimInstance	-Namespace	root/Micr
osoft/Windows/WindowsUpdate	-ClassName	MSFT_WUOperationsSession;	Invoke-CimMeth
od	-InputObject	$ci	-MethodName	ApplyApplicableUpdates;	exit	}
14
15		RUN	mkdir	C:\temp
16

17		RUN	(new-object	Net.WebClient).DownloadFile('https://github.com/AzureWorksh
ops/samples-simple-iis-website/archive/master.zip','C:\temp\master.zip');
18		RUN	Expand-Archive	-LiteralPath	C:\temp\master.zip	-Destination	C:\temp
19		RUN	(new-object	-com	shell.application).namespace('C:\inetpub\wwwroot\').Co
pyHere((new-object	-com	shell.application).namespace('C:\temp\samples-simple-ii
s-website-master').Items(),	16);
20		RUN	del	c:\inetpub\wwwroot\iisstart*.*
21
22		EXPOSE	80

4.	 To	save,	Ctrl+S

Explanation
First,	if	you	remember	from	the	previous	steps,	we	were	required	to	open	a	PowerShell	prompt	as	an
Adminstrator	to	allow	the	command	to	be	executed	with	elevated	privileges.	By	default,	all	Docker
images	execute	under	the	identity	of	the	built-in	Administrator	account.

Line	1:	Specifies	the	base	image,	including	the	tag,	with	which	we're	starting.	In	our	case,	we	are
using	the	Microsoft	Windows	Server	2016	with	IIS	as	the	base	image.

Line	2:	Directs	Docker	to	run	everything	from	a	PowerShell	shell	(not	the	default	DOS/CMD	prompt).

Line	3:	Specifies	the	owner	of	the	image	with	their	email	address.

Lines	5-11:	Installs	the	Microsoft.NET	Framework	for	ASP.NET	and	the	ASP.NET	extensions	into	IIS.
Most	of	these	should	already	be	installed	by	default	for	the	image	we're	downloading.	However,	this
ensures	that	our	system	is	up-to-date.

Line	13:	Installs	any	necessary	system	updates.	NOTE:	On	a	host	system	or	virtual	machine,	we
would	normally	require	a	reboot.	However,	because	we	are	simply	building	an	image,	the	image	will
stop	naturally	once	it's	built.	We	will	then	only	boot	the	image	once	we	load	it	into	a	container.

Therefore,	we	theoretically	have	a	built-in	reboot	in	our	process	and	a	reboot	here	is	not	necessary.

Line	15:	Creates	a	 temp 	folder	in	which	to	store	our	.zip	file.	In	our	demo,	we	downloaded	the	.zip
file	to	our	temporary	 D:\ 	drive.	We	don't	have	that	drive	in	the	container,	so	we'll	use	a	temporary
folder.

Line	17:	Downloads	the	.zip	file	for	our	website	to	our	 C:\temp 	folder.

Line	18:	Decompresses	(expands)	our	.zip	file	into	the	 C:\temp 	folder.

Line	19:	When	we	decompress	our	.zip	file,	we	create	a	subdirectory	called	 samples-simple-iis-
website-master .	Here,	we	are	copying	the	contents	of	that	subfolder	to	our	main	IIS	folder
C:\inetpub\wwwroot .

Line	20:	Deletes	the	two	IIS	placeholder	files.

Line	22:	IIS,	by	default,	uses	port	80.	Therefore,	similar	to	a	firewall	in	the	image,	we	open,	or
expose,	the	port	to	the	outside	host.	We	will	bind	to	this	open	port	later	when	we	run	a	container
based	on	this	image.	NOTE:	This	particular	image,	microsoft/iis,	already	exposes	port	80	for	us,	so
we're	technically	not	required	to	add	this	line.	However,	it's	still	a	good	practice	to	explicitly	include
this	line	in	case	we	need	to	reuse	this	Dockerfile	or	the	underlying	base	ever	changes.

That's	it!	That's	all	there	is	to	creating	a	Dockerfile.

Overview
Now	that	we	have	our	Dockerfile,	let's	build	our	image	from	it.

Build	the	Docker	Image
Once	we	have	our	Dockerfile,	building	the	image	is	pretty	simple.

From	the	PowerShell	window,	type	the	following:

Get-Content	"c:\users\localadmin\desktop\Dockerfile.txt"	|	docker	build	-t	test
/simpleweb	-

This	will	build	an	image	using	 test/simpleweb 	as	the	repository	name.	We	are	using	PowerShell's
Get-Content 	command	to	read	the	contents	of	our	previously	created	Dockerfile	and	then	pipe	them
to	Docker's	build	command.

Due	to	the	size	of	Windows	Server,	the	initial	build	will	take	some	time	because	it	must	download	the
base	image	first.	Watch	how	Docker	will	step	through	our	Dockerfile	to	build	our	image.	Keep	in	mind
while	you	watch	this	process	that	each	step	in	our	Dockerfile	constitutes	a	layer	in	our	image.	We'll
see	the	results	of	this	below.

Check	Your	Images
From	the	command	prompt,	type	the	following:

docker	images

You	should	see	something	similar	to:

Build	Image

REPOSITORY										TAG																	IMAGE	ID												CREATED												
	SIZE
test/simpleweb						latest														9f4ec58ca830								3	minutes	ago						
	11.1GB
microsoft/iis							latest														4f803ffceb53								37	hours	ago							
	10.6GB

Our	image	has	been	built	using	the	specified	repository	name.	You'll	also	notice	that	the
microsoft/iis 	image	has	been	downloaded.	This	is	because	the	build	process	required	Windows
Server	with	IIS	in	order	to	build	our	image.	Now	that	our	image	has	been	built,	you	could	delete	the
microsoft/iis 	image	if	you	wanted	to.	Finally,	when	looking	at	the	image	sizes,	you'll	see	that	our
image	is	500MB	larger	due	to	the	installation	of	Microsoft.NET,	ASP.NET	and	other	dependencies.

Be	aware	that	the	Nano	Server	image	is	only	1.07GB	compared	to	the	full	Windows	Server	at	10.6GB
which	makes	Nano	Server	more	ideal	for	containers.	Its	really	not	best	practice	to	use	Windows
Server	in	production	as	downloading	10.6GB	and	deploying	that	across	your	enterpise	could
consume	a	lot	of	bandwidth.	For	production,	it's	best	to	opt	for	Nano	Server.	But,	again,	Nano	Server
requires	a	little	more	preparation	that	extends	a	tad	further	beyond	the	scope	of	this	workshop.

View	Image	History
What	if	we	wanted	to	see	how	our	image	is	constructed?	Or,	what	if	we	wanted	to	see	exactly	how
much	disk	space	each	layer	of	our	image	required?	We	could	find	this	out	by	checking	the	image's
history.

docker	image	history	test/simpleweb

When	you	run	the	above	command,	you	see	each	command	along	from	our	Dockerfile	along	with	it's
layer	id	and	the	space	requirements,	if	any.

We've	now	built	a	custom	image	based	on	a	Dockerfile.	We	can	use	our	custom	image	to	deploy
containers	locally.	Or,	we	could	upload	our	image	to	a	central	repository	so	that	others	could
leverage	our	image's	functionality.

Overview
Our	custom	image	has	now	been	created	and	is	currently	sitting	in	our	local	repository.	Let's
instantiate	a	container	based	on	that	image.

Start	a	Container
To	start	a	container	from	our	image	is	very	simple.	The	only	thing	we	need	to	remember	is	exposing
the	internal	port	to	the	host.

docker	run	-d	-p	8080:80	--name	'web_8080'	test/simpleweb	
docker	run	-d	-p	8081:80	--name	'web_8081'	test/simpleweb
docker	run	-d	-p	8082:80	--name	'web_8082'	test/simpleweb

We've	started	3	separated	instances	of	our	web	server.	We've	bound	the	web	server's	internal	port
80	to	three	host	ports	(e.g	8080-8082).	We've	also	supplied	meaningful	names	to	our	containers.	We
can	reference	those	containers	by	the	names	we've	specified	for	easier	management.	For	example,
we	can	restart	or	stop	a	container	using	it's	name	instead	of	the	container	id.

Check	the	running	images:

docker	ps

You	should	see	something	like	the	following:

Deploy	Container

CONTAINER	ID								IMAGE															COMMAND																		CREATED							
							STATUS														PORTS																				NAMES
3d1929c8e1b5								test/simpleweb						"C:\\ServiceMonitor..."		3	seconds	ago	
							Up	2	seconds								0.0.0.0:8082->80/tcp					web_8082
323a65fa5143								test/simpleweb						"C:\\ServiceMonitor..."		11	seconds	ago
							Up	10	seconds							0.0.0.0:8081->80/tcp					web_8081
7d4fee5c8f89								test/simpleweb						"C:\\ServiceMonitor..."		About	a	minute
	ago			Up	59	seconds							0.0.0.0:8080->80/tcp					web_8080

Notice	that	all	three	containers	are	running,	but,	as	we've	specified,	are	bound	to	different	ports	and
have	custom	names.

For	practice,	restart	 web_8081 :

docker	restart	web_8081

Executing	the	command,	may	take	a	second.	After	it	completes,	check	the	running	images	again.	You
should	now	see	that	the	uptime	for	 web_8081 	is	less	than	the	other	two	containers.

We	have	now	successfully	created	three	container	instances	running	our	custom	image.

View	the	Container	Websites
Before	we	attempt	to	expose	our	sites	to	the	outside	world,	let's	make	sure	that	we	can	access	them
locally	on	the	VM.

1.	 Open	a	web	browser	on	the	virtual	server	and	try	to	navigate	to	 http://localhost:8080 	(our
web_8080 	container).	Oops.	Is	seems	we	received	an	error.	What	did	we	do	wrong?	Let's
investigate.

2.	 Look	again	at	the	output	of	the	 docker	ps 	command.

3.	 Notice	the	Ports	column.	Our	external	port	is	not	mapped	to	the	loopback	address	(e.g.
127.0.0.1 	or	 localhost).	Long	story	short,	this	is	due	to	a	way	Windows	maps	its	network
interfaces.

4.	 We	need	to	get	the	actual,	virtual	IP	address	of	the	container.	To	do	this,	type	the	following	at
the	PowerShell	prompt	changing	the	container	name	for	each	running	container:

docker	inspect	--format	'{{	.NetworkSettings.Networks.nat.IPAddress	}}'	web_808
0

5.	 Now,	let's	use	the	returned	IP	instead	of	the	 localhost 	to	load	our	website.	In	the	browser
change	the	URL	to	 http://<web_8080's	virtual	IP	address:8080> 	(e.g.
http://172.26.67.126:8080).	This	should	display	our	Hello	World	sample	web	site.

Overview
The	final	part	of	this	workshop	is	to	practice	exposing	a	container	outside	of	Azure.	We're	going	to
create	a	simple	web	server	and	access	it	from	our	local	machine.	Due	to	the	way	Windows
(specifically,	Hyper-V)	currently	handles	networking	with	Docker	(e.g.	the	 0.0.0.0 	IP	assignment	to
our	containers),	this	process	is	much	simpler	in	Linux.	So	we	will	step	through	this	slowly	so	that	you
understand	the	steps.

Network	Security	Group	(NSG)
When	we	created	our	Windows	Server	virtual	machine,	we	accepted	the	defaults,	including	the
default	settings	for	our	NSG.	The	default	settings	only	allowed	RDP	(port	3389)	access.	We	need	to
add	a	rule	to	our	NSG	to	allow	HTTP	traffic	over	it's	default	port	for	our	running	web	servers.

1.	 If	you	are	not	still	there,	go	back	to	the	Azure	portal	and	navigate	to	the	settings	of	your
Windows	Server	virtual	machine.

2.	 In	the	left	menu,	click	on	Network	interfaces	 .

3.	 This	will	open	the	Network	Interfaces	blade	for	your	Windows	Server	virtual	machine.	Click	on
the	singular,	listed	interface.

4.	 In	the	left	menu,	click	on	Network	security	group	 .

5.	 This	will	list	the	currently	active	NSG.	In	our	case,	it	should	be	the	NSG	that	was	created	with
our	virtual	machine	-	docker-win-nsg.	Click	on	the	NSG	(NOTE:	Click	on	the	actual	NSG
link,	NOT	on	Edit).

6.	 In	the	left	menu,	click	on	Inbound	security	roles	 .

7.	 At	the	top	of	the	blade,	click	Add	 .

8.	 Enter	the	following	configuration:

Service:	HTTP
Port	range:	80
Priority:	100
Name:	HTTP

Expose	Site	in	Azure

9.	 Click	OK.

This	will	take	a	couple	of	seconds	to	complete.

Docker	Networking
Full	disclosure,	the	Docker	Networking	topic	is	a	very	deep	and	complicated	subject.	There	are	many
ways	to	accomplish	this,	especially,	if	you	are	using	an	orchestrator	such	as	Docker	Swarm	or
Kubernetes.	We	typically	want	a	networking	configuration	that	allows	us	to	dynamically	add
containers	(services)	and	have	them	auto-discovered.	This	is	particularly	critical	for	services	that
should	autoscale	based	on	demand.

For	our	workshop,	we	are	going	to	sidestep	this	conversation	and	leave	it	to	another	workshop.
Instead,	we	are	going	to	create	a	network	schema	that	will	allow	us	to	expose	our	individual
containers	manually	via	an	IP	address.	In	our	case,	we	want	a	configuration	that	is	similar	to	what's
known	as	a	Host	mapping.	By	default,	Docker	on	Windows	only	creates	a	NAT	network.	Therefore,	we
need	to	create	our	Host	network	manually.	In	Docker,	this	type	of	network	configuration	is	known	as
Transparent.

For	the	next	section,	you	will	be	switching	back	and	forth	between	the	Azure	portal	and	your	VM.
Keep	both	open.

Set	Server	Static	IP
When	we	created	our	VM,	we	opt'ed	that	the	virtual	machine's	internal	IP	was	set	dynamically.	We
now	want	to	set	it	to	a	static	internal	IP;	and,	we	have	to	do	this	in	two	places	-	Azure	portal	and	the
VM,	itself.

Static	IP	-	Azure
Let's	begin	by	setting	the	static	IP	in	Azure.

1.	 If	you	are	not	still	there,	go	back	to	the	Azure	portal	and	navigate	to	the	settings	of	your
Windows	Server	virtual	machine.

2.	 In	the	left	menu,	click	on	Network	interfaces	 .

3.	 This	will	open	the	Network	Interfaces	blade	for	your	Windows	Server	virtual	machine.	Click	on
the	singular,	listed	interface.

4.	 In	the	left	menu,	click	on	IP	configurations	 .

5.	 This	will	list	all	of	the	VM's	currently	assigned	IPs.	At	the	moment,	there	should	only	be	one	IP
configuration	listed	ipconfig1.	Under	the	table	heading	PRIVATE	IP	ADDRESS,	we	should	see
that	it	is	assigned	dynamically.	Click	on	ipconfig1.	

6.	 Approximately	80%	down	on	the	resulting	blade,	you	should	see	a	toggle	between	Dynamic
and	Static.	Click	on	Static.	

7.	 This	should	enable	the	input	box	for	the	IP	address.	Leave	it	as-is.

8.	 At	the	top	of	the	blade,	click	Save.

This	will	take	a	second,	but	after	the	save	has	been	completed,	the	Static	button	should	turn	from
purple	to	light	blue	and	the	Save	button	should	be	disabled.

Static	IP	-	VM
Now,	let's	set	the	static	IP	on	the	virtual	machine.

1.	 On	the	VM,	at	the	PowerShell	prommpt	(as	Administrator),	type	 netsh	interface	show
interface .	You	will	see	something	like	the	following	table:	

The	vEthernet	is	a	virtual	adapter	added	by	Docker.	It's	the	internal,	NAT	adapter.	We	want
the	Ethernet	adapter.	In	our	case,	it's	Ethernet	2,	but	it	could	be	1,	3	or	some	other	number.
It's	our	primary	adapter	provided	to	us	by	Hyper-V.

2.	 Again,	at	the	PowerShell	prompt,	type	 netsh	interface	ip	show	config	name="Ethernet	2"
(obviously,	substitute	"Ethernet	2"	for	the	name	of	your	ethernet	adapter	if	it	is	different).
IMPORTANT:	Keep	this	information	handy	as	you	will	need	it	for	a	couple	of	steps	below.	

This	will	show	us	the	necessary	configuration	(outlined	with	a	red	border)	to	manually
configure	our	adapter	settings.

At	the	PowerShell	prompt,	type	 ncpa.cpl .	This	will	show	something	like	the	following.	

3.	 At	the	PowerShell	prompt,	type	 ncpa.cpl .	This	will	show	something	like	the	following.	

4.	 Right-click	on	your	primary	ethernet	adapter	(e.g.	"Ethernet	2").	Select	Properties.

5.	 In	the	dialog	window,	select	Internet	Protocol	Version	4	(TCP/IPv4)	and	click	on
Properties.	

6.	 In	this	dialog,	select	Use	the	following	IP	address:	and	Use	the	following	DNS	server
addresses:.	Additionally,	enter	the	information	you	acquired	from	the	previous	PowerShell
netsh 	command.	Your	information	may	not	be	exactly	like	below	(again,	compare	the

information	to	the	 netsh 	output),	but	it	should	like	similar.	

7.	 Click	OK.

8.	 Click	Close.	(NOTE:	You	may	temporarily	lose	your	connection,	but	you	should	automatically
be	reconnected	within	a	few	seconds.)

Create	a	Transparent	Network
We	are	now	ready	to	create	a	Transparent,	or	Host,	network	within	Docker	that	will	allow	us	to	create
containers	that	have	IP	addresses	on	the	parent	virtual	machine's	subnet.	This	will	provide	a	direct
route	from	inside	or	outside	of	our	network	to	the	container.

Let's	start	by	examining	the	current	networks	Docker	has	created	for	us.

On	the	VM,	at	the	PowerShell	prompt,	type	 docker	network	ls .	This	should	return	something	similar
to	the	following:

NETWORK	ID										NAME																DRIVER														SCOPE
7d22076d85e0								nat																	nat																	local
3112bd939814								none																null																local

You	will	see	two	networks	listed	-	 nat 	and	 none .	Anything	attached	to	the	 none 	network	is	not
accessible	from	a	network.	The	 nat 	network	is	what	our	current	three	containers	are	attached	to.	It
is	what	allows	us	to	connect	to	them	from	the	virtual	machine's	web	browser.	The	 nat 	network	is
also	what	allows	the	containers	to	communicate	with	each	other.	It's,	basically,	a	network	that's
internal	to	that	virtual	machine.

To	view	more	information	and	see	the	containers	currently	connected	to	the	network,	type	 docker
network	inspect	nat .

Among	other	things,	you'll	see	the	subnet,	gateway	and	the	containers	attached	to	the	network.

In	this	process,	we	are	going	to	eventually	reserve	some	IP	addresses	within	our	subnet	to	be	used
by	our	containers.	Again,	keep	in	mind,	that	our	containers	must	reside	on	the	same	subnet	as	our
VM.

Multi-Homing
Ideally,	you	would	probably	have	two	NICs	attached	to	this	VM	and	set	it	up	as	a	multi-
homed	server.	This	would	allow	you	to	have	a	separate	subnet	that's	dedicated	to	your
containers.	However,	this	is	not	the	recommended	setup	for	production	as	you	would	utilize
some	type	of	orchestrator	with	service	discovery	and	a	mesh	network.

Let's	create	our	transparent	network	to	sit	inside	our	subnet.

In	PowerShell,	type	the	following	and	press	Enter.

docker	network	create	-d	transparent	--subnet=10.0.0.0/24	--gateway=10.0.0.1	tr
ansparent

IMPORTANT:	Refer	to	the	information	you	received	from	the	last	 netsh 	command.	(NOTE:	You	may
temporarily	lose	your	connection,	but	you	should	automatically	be	reconnected	within	a	few
seconds.)

This	command	tells	Docker	to	create	a	new	network	using	the	transparent	driver	(-d)	with	a
10.0.0.0/24 	subnet	and	 10.0.0.1 	gateway,	naming	it	"transparent".

Now,	again,	at	the	PowerShell	prompt,	type	 docker	network	ls .	You	should	now	see	the	network
listed.

Additionally,	type	in:

netsh	interface	show	interface

This	will	allow	you	to	view	the	available	network	interfaces	(NICs).	

You'll	notice	that,	when	we	created	our	transparent	network,	Docker	created	a	new	virtual	network
interface	vEthernet	(HNSTransparent).	This	is	the	NIC	we'll	add	our	IPs	to	in	the	steps	below.

We've	now	created	our	transparent	network	and	we're	ready	to	add	our	publicly	accessible
containers.

Add	Public	Containers
After	all	of	that,	we're	now	finally	ready	to	add	our	public	containers	and	access	them	from	outside	of
Azure.

From	this	point	onward,	each	step	below	should	be	repeated	for	each	container	we	wish
to	add.	Simply	change	the	IP	address.

Pick	a	"Reserved"	IP
Theoretically,	our	transparent	network	doesn't	exist	outside	of	our	VM	so	Azure	DHCP/DNS	will	not
automatically	assign	an	IP	address	to	our	container.	We	must	assign	an	IP	address	to	it	manually.
First,	let's	pick	an	IP.

I'm	going	to	start	with	*.*.*.100	as	my	first	container's	IP	address.	For	my	network	(your's	may	be
different),	the	full	IP	address	will	be	 10.0.0.100 	with	a	subnet	mask	of	 255.255.255.0 	(again,	you
get	the	subnet	and	mask	from	the	 netsh 	command).

"Reserve"	the	IP	in	Azure
So,	first,	we're	not	really	reserving	the	IP	address.	But,	in	a	way,	we	kind	of	are.	We	are	going	to
manually	assign	our	IP	as	a	secondary	IP	to	our	virtual	machine's	NIC.

1.	 If	you	are	not	still	there,	go	back	to	the	Azure	portal	and	navigate	to	the	settings	of	your
Windows	Server	virtual	machine.

2.	 In	the	left	menu,	click	on	Network	interfaces	 .

3.	 This	will	open	the	Network	Interfaces	blade	for	your	Windows	Server	virtual	machine.	Click	on
the	singular,	listed	interface.

4.	 In	the	left	menu,	click	on	IP	configurations	 .	This	time	we'll	assign	a	secondary	IP
address.

5.	 In	the	top	menu,	click	on	Add	 .

6.	 In	the	fields	make	the	following	selections:

Name:	web_public100
Allocation:	Static
IP	address:	10.0.0.100	(use	the	IP	address	you	chose	above)
Public	IP	address:	Enabled
IP	address:	(click	on	it	&	Create	New)

Name:	web_public100
Assignment:	Dynamic

7.	 Click	OK.

This	will	take	a	second;	be	patient.	Once	it	has	completed,	you'll	see	the	new	IP	configuration	listed
in	the	table.	Make	note	of	the	PUBLIC	IP	ADDRESS	for	the	new	IP	configuration.	You	will	use	this	IP
address	to	access	your	container	from	a	web	browser	once	we're	done.

We've	added	the	necessary	configuration	in	Azure	to	route	requests	for	that	IP	to	our	VM.	In	the	next
step,	we'll	add	the	IP	to	the	machine	so	that	it	will	listen	on	that	IP	address.

Assign	the	IP	to	the	Virtual	NIC
Remember	the	new	virtual	NIC	that	was	created	above	when	we	created	our	transparent	network?
We	need	to	add	an	IP	address	to	it.	Most	of	the	time	you	would	add	the	IP	address	through	the	GUI,
but	we	cannot	do	this.	We	need	to	use	a	feature	called	"SkipAsSource"	(more	info).	Therefore,	we
must	use	the	 netsh 	command	once	again	so	that	the	SkipAsSource	feature	is	not	enabled.

Go	back	to	your	VM	and	at	the	command	prompt,	type:

netsh	int	ipv4	add	address	"vEthernet	(HNSTransparent)"	10.0.0.100	255.255.255.
0

(again,	use	the	virtual	NIC	name,	IP	address	and	subnet	mask	acquired	from	the	various	steps	above)

Now,	type	the	command

netsh	interface	ip	show	config	name="vEthernet	(HNSTransparent)"

https://blogs.technet.microsoft.com/rmilne/2012/02/08/fine-grained-control-when-registering-multiple-ip-addresses-on-a-network-card/

We	see	that	both	IPs	(our	original	static	IP	and	our	new	IP)have	been	assigned	to	our	transparent
network:	

Our	machine	will	now	listen	for	requests	on	that	IP	address.	Our	routing	is	complete.	Now,	we	simply
need	to	add	a	container	and	assign	it	that	IP	address.

IMPORTANT:	Our	transparent	network	is	a	virtual	network	on	our	machine.	If	we	delete	our
transparent	network	in	Docker,	then	we	also	remove	the	IPs	associated	with	our	virtual	NIC.	Just	be
aware.

Create	a	Container	on	Our	Transparent	Network
We	already	have	our	first	three	containers	running	on	our	 nat 	network.	Unfortunately,	there's	no
easy	way	to	reconfigure	a	container's	port	mapping;	and,	you	can't	change	it	while	the	container	is
running.	So,	we'll	create	a	new	container	and	attach	it	to	our	transparent	network.

From	the	PowerShell	command	line,	type

docker	run	-d	--net=transparent	--ip=10.0.0.100	--name	"web_public100"	test/sim
pleweb

This	command	does	a	couple	of	things.	First,	as	you	may	remember	from	earlier,	we	are	running	this
container	in	the	background,	or	as	"detached"	(-d).	Second,	we	explicitly	specify	the	network	in
which	to	attach	our	container.	In	our	case	 transparent .	When	we	use	a	transparent	network	(or	a
few	other	types),	we're	required	to	specify	the	IP	address	as,	again,	the	host	network's	DHCP	cannot
assign	an	IP	address.	The	rest	of	this	command	should	be	familiar.

Let's	view	our	running	containers	by	typing	 docker	ps .

CONTAINER	ID								IMAGE															COMMAND																			CREATED						
							STATUS														PORTS																		NAMES
821e2dc235d4								test/simpleweb						"C:\\ServiceMonitor..."			18	minutes	ag
o						Up	16	minutes							80/tcp																	web_public100
1c84a5399eaa								test/simpleweb						"C:\\ServiceMonitor..."			3	hours	ago		
							Up	3	hours										0.0.0.0:8082->80/tcp			web_8082
3b644253ff84								test/simpleweb						"C:\\ServiceMonitor..."			3	hours	ago		
							Up	3	hours										0.0.0.0:8081->80/tcp			web_8081
82dc9c21c5f2								test/simpleweb						"C:\\ServiceMonitor..."			3	hours	ago		
							Up	3	hours										0.0.0.0:8080->80/tcp			web_8080

We	now	see	our	 web_public100 	running,	but	there	is	no	NAT	translation	-	it's	simply	listening	on	port
80.	If	we	inspect	the	container's	configuration	(e.g.	 docker	container	inspect	web_public100),	we
see	our	assigned	IP	address	closer	to	the	end	of	the	output.

Whew!	That's	it!	We've	added	a	Widows	container	and	made	it	accessible	outside	of	Azure.	Let's	test
our	work.

Test	on	the	VM
Let's	make	sure	we	can	access	the	container	from	our	VM.

1.	 On	the	VM,	open	up	Internet	Explorer.

2.	 In	the	URL,	type	the	IP	address,	including	'http://'	(e.g.	 http://10.0.0.100).	NOTE:	We	don't
have	to	use	a	port	this	time	as	the	container	is	mapped	directly	to	port	80.

If	successful,	you	should	see	the	'Hello	World'	web	page.

Test	Outside	of	Azure
Now	that	we	know	our	container	is	accessible	from	a	IP	address	from	within	our	subnet,	let's	make
sure	it's	accessible	from	outside	of	Azure.

1.	 On	your	local	machine,	open	a	web	browser.

2.	 Use	the	public	IP	address	you	acquired	from	adding	the	"Reserved	IP"	to	your	machine	and
type	it	(including	the	'http://')	into	the	URL.

Success!	Again,	your	should	see	the	'Hello	World'	web	page.

Review
Gee,	that	was	a	bit	of	work!	As	I	stated	earlier,	doing	this	in	Linux	is	much	easier.	If	you	haven't	done
so	already	try	it	out.	Since	this	was	quite	a	bit	of	effort,	I	wanted	to	quickly	review	what	we've	done.

1.	 We	opened	up	port	80	in	Azure's	firewall	to	allow	HTTP	traffic	to	flow	through.

2.	 We	changed	our	IP	configuration	for	the	VM	to	a	static	IP	from	a	dynamic	IP	so	that	we	could
later	add	additional	IPs	to	the	VM's	NIC	and	not	mess	up	routing	should	the	VM	reboot.

https://azureworkshops.github.io/Dockerfiles-Linux/

3.	 We	created	a	transparent	network	in	Docker	to	allow	our	containers	to	connect	directly	to	our
Host	subnet.

4.	 We	picked	a	"reserved	IP"	and	then:

1.	 Added	that	IP	to	our	VM	in	Azure	as	a	new,	static	IP	configuration

2.	 Added	that	IP	to	our	virtual	NIC	created	by	the	Docker	transparent	network

3.	 Created	a	new	container	and	assigned	it	to	our	transparent	network	and	assigned	it
the	IP

All	of	the	steps	on	this	page,	simply	comes	down	to	the	previous	4-7	steps.	Also,	remember,	now	that
the	networking	is	setup	(steps	1-3),	you	only	need	to	follow	step	4	for	all	future	containers	on	this	VM
that	should	have	external	access.

Next	Steps
As	stated	multiple	times,	this	is	not	the	ideal	scenario	when	you	need	a	fully-scalable	and	redudant
solution.	For	those	types	of	environments,	it	is	recommended	that	you	use	an	orchestrator	like
Docker	Swarm	or	Kubernetes.

However,	with	that	said,	you	could	run	step	4	again	and	add	another	web	server	container	to	your
VM's	Docker.	Now	that	you	have	two	containers	on	the	subnet,	you	could	add	a	load	balancer	in
Azure	for	a	bit	of	redudancy.	Of	course,	it's	only	as	redudant	as	the	VM,	itself.	For	this,	you	would
probably	want	to	add	an	Availability	Set	with	multiple	VMs	hosting	Docker.	Then,	load	balance	across
the	multiple	Docker	containers.

